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DUALITY IN HOMOGENEOUS PROGRAMMING 

The problem of maximizing a concave function subject to linear con- 

straints does not have a dual,   as is the case in linear programming,   in 

which primal optimizing variables do not appear.    As a special case of our 

principal result it will follow that such a dual does indeed exist whenever the 

objective function is also homogeneous. 

♦ n 
In the linear case we are given an m  x  n matrix A  and vectors    aeR   , 

beR   .     The feasibility sets   X  and  Y   are defined by:    X=R    r>{x|xA < a]   , 

Y =R+ A fy|Ay  >  b} .      Since   xA  <  a   if and only if  xAy <  ay for all yeR 

(and similarly for  Ay > b),  we may write: 

X ^R1^ n-fxIxAy  <  tpiy)    all y e RM 
CD .      +     L - +i 

Y = R^ nlvl^Ay  ><Hx)     ail xeR^l 

where   ^(y) -  ay  and <|)(x) = bx. 

A fundamental theorem of linear programming fsee,   e.g. , [3]  and [5]   ) 

states that if X  and  Y   are both non-empty then 

(2) max   <Kx)?   min     ^Cy)    exist and are equal . 
x e X y e Y 

We propose to demonstrate that (2) holds for larger class of triples (A,4> , ^) . 

R      denotes the set of all real  m-tuples.    If u,   vtR      then u .<  v means 

that the inequality holds for each component.    In particular,   R      = 

=  R     ^{x|x>0].    IfMisapxq matrix and N is a q x t matrix then M 

N  represents the usual matrix product.    To simplify notation,   the same 

symbol is used for both a column vector and its transpose; the meaning 

will,,   in any case,  be clear from the context. 



Assumption A,.    Let    «f   :   R.     ~*R.    ^ : R.    ~*R be positively homo- 

geneous ,   continuous,  concave and convex respectively. 

Let us first show that A.   does not guarantee that (2) holds when X and 

Y are non-empty.    If m = 2,  n = 1  and A =1 , I,     <t)(x) = 4)(5,rj)    =     —- —, 

[<t>(0) = 0],  0(y) = y   then Al   is satisfied and  X = R^H |(?,r7)| H ^l} . 

Y = R.nj yly >   if   are non-empty.    Thus min    ^(y) =  1,  but if    rj <   1  then 
+    l J yeY 

•M?.)!) <   1>  although   sup    <t>(x) =  1,   hence  max <|>(x) does not exist. 
xeX x e X 

The situation just illustrated cannot occur if the following holds: 

Assumption A?. 

i)   If xeR^1,  xA <  0,  4>fx)  >  0  then x = 0 

.n ii)   If yeR"   .  Ay  >  0.   ^/(y)   <   0   then y = 0 

One sees immediately that (i) is violated in the preceding example,   for let 

x = (1,0)   then xA   = 0  and   «j)(x) = 0. 

Before proving that if A,   and  A^   hold then so does (2),  we require the 

following lemma which specializes to homogeneous functions the well-known 

fact that a concave function is the infimum of its supports.    The proof is pre- 

sented here for the sake of completeness. 

Lemma  1.    Let $  be as in assumption A,,   consider 

T = Rrnr) [t|tx  >  <Hx)  all  xeR^1],   then   T   is non-empty,   and   <Hx) = inf   tx, 
1 , teT 

for all x e R ,   . + 

Proof.    Let  C =)(x,X))x€R     ,   X  <   4)(x)l   then  C   is a closed convex 

cone.    Now if  x0eR    ,   fx  >   0,   then (x^,   IJ. +  <t>(x0) if C, whence (see [2], Theorem  1) 

A function f :   C   — R   ,   where C c R^  is a cone,   is positively homogeneous 

providing  f(Xx) = Xf(x)   for all   xeC    and   XeR 
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there exist   teR      and   ae R   suchthat  tx0 - a[ |J. + <Kx0)] < 0<  tx - aX   all 

{x.MeC. 

It then follows that   a   >  0,   so that (dividing by a) we may assume 

a = 1,  but then   t eT.    Reiterating,   if x0 e R    ,   jx  > 0   then    3t e T    suchthat: 

tx0 " ^ 1    ^x0^   - tx0 

giving the desired result.    We are now able to prove: 

Theorem 1.    If assumptions  A,   and A?  hold then (2) holds. 

Proof.      Let 

(3) 

S=Rnn|s|sy<    0(y)    ^       all   y e RM 

T = R^Xjtx >     <j>(x)       /      all xeR^1 j 

Then  S  and  T  are convex sets; now consider the system of inequalities: 

(4) (x,y,s.t)e R1^ x  R^xs x   T 

s   -   xA   >  0 

-1   +  Ay   >  0 

<t>(x) - ^(y)   >  0 

If (4)   has a solution x,   y.   s,  t     then 

My) <   ^(x)   5     tx  <  xAy   <   sy  <    ^/(y) • 

which is a contradiction.     Thus (see [2],   Theorem  1)   there exist x» e R      , 

y0 e R"    X e R   ,    not all zero and such that (s - xA)y   + x0(Ay - t) + X[ 4>(x) -0(y)] i 

<  0   for all   xeR    ,   yeR   ,   seS,   teT.     Fronn the homogeneity and continuity 

of 4>  and  ip it then follows that: 



xAy0 > \<|)(x)     , all  x e R^1 

x0Ay < X^(y)     , all  y e R^ 

8y0 < tx-        , all  seS, teT 

The last condition together with Lemma  1 imply: 

^(y0) £ <Hx0) 

Now if    X. = 0   then either   x»   ^  0   or  y-   jt  0   and Ay0   >  0,  x.A <  0. 

Suppose  x- ^ 0,   if   yn ^  0  the argument is analogous,  then by A2(i)   we have 

<t>(x0) <  0,   whence ^/Cy«)   <  0   and   y0 ^   0,   contradicting  A2(ii).    Thus  X.  >  0 

and,   dividing all inequalities by \,  we may assume  X =  1.    This tells us that 

x0€X,  y0€Y and <JJ(X0)   < x0Ay0  <  0(yo)  < <t>{x0).    So that if   xeX,  yeY then 

<Hx)   <  xAy0   <  ^(y0)  =   ^{XQ) 

iP{y)  > x0Ay > <j)(x0) -  ^{y0) 

proving the theorem. 

In case   4)    and   ip   are linear-homogeneous then it is true that   max <j>(x) 
xeX 

exists if and only if   min iply)   exists,   in which case they are equal.    As above, 
yeY 

this statement is not always true under assumption A,; however,  we show: 

Theorem 2. 

I)     If A,   and A  (ii) hold,  and   max     <f(x)   exists then (2) holds. 
^ xeX 

II)   If  A.,   and ^?{i) hold,  and   min   ^(y) exists then (2) holds. 
yeY 

We prove (1),  the proof of (II) is similar.    Suppose that  x-e X  and «{"(XQ) = 

=  max   «Kx)  then the system: 
xeX ' • 

• c 
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(6) (x. s)e R^x s 

s - xA >  0 

(t)(x)  - <Mx0)  > 0 

has no solution.    Thus (see   [2],   Theorem 1)  there exist    y0 e R  ,  \eR   , 

not both zero and such that 

sy0 - xAy0 + X[ 4>(x) - ^(x-)] <  0     for all     x eR.   .   seS.    From the 

homogeneity of $  and Lemma  1   it then follows that 

xAy-   > \<Kx)        . for all   x e R" 
(7) U  " + 

^y0)    <   M>(x0) 

Now,   if   X  = 0 then   y0 ^   0   and Ayn   >  0,   ipiy^}  <  0,   contradicting   A2(ii). 

It may then be as sunned that   X.   >   0   and,   in fact,   that   X = 1 (replacing   yn   by 

Xy_).    Thus,   from (7),   yn eY,   and for any   y eY    we have: 

^(y0) < 4>(x0) <   x0Ay <   MY) > 

i.e., ^(y0)  =   min   ^(y)    =    ^(XQ)  . q.e.d. 
y e Y 

It should be remarked that if   A,    holds then (x) and (ii) of assumption A^ 

are equivalent to (i)'   and (ii)'   respectively of: 

Assunnption A' . 

i)'   3y0 eR^   ^xAy0   ><Mx)     all   x e R^1 .   x ^   0 

ii)'  ^^XQCR
1
^   9xöAy  <xlj(y)     all  y e R^ ,     y ^  0 

These in turn are equivalent to the familiar conditions that  X,   Y   have non- 

empty interiors.     To see,   for instance,   that (i) and (i)'   are equivalent it 

-5- 



suffices to show that (i) implies (i)'   since the implication in the other direc- 

tion is trivial.    Assuming (i)'  false,   the system 

(8) (y.t) eR^ XT 

Ay - t > 0 

has no solution,  whence (see [2] ,  Theorem 1)  there is an   x eR    ,   x ^  0 , and 

such that   xAy  <  tx  for all y e R^   and   teT.    Thus   xA <  0   and (using 

Lemma 1)    «M*)  > 0,   contradicting (i).    To return to our remark about maxi- 

mizing a concave homogeneous and continuous function «^ : R ,    ~* R.   subject 

to the inequalities   x  >   0   and  xA <   a,  the dual is then:    minimize    ay   subject 

to   yeY.    Conditions (i) and (ii)'   become: 

xeR     ,   x ^  0,   xA  <  0,    ^(x)   >  0 has no solution; and 

xeR     ,   xA  <  a has a solution; respectively. 

Also,   since     yeY   providing   y >  0    and   Ay  >  t   for some support   t   of     <}> , 

we may characterize    Y   by means of the gradient of   cj). 

Results similar to Theorems   1 and Z can be shown to hold under other 

and somewhat less restrictive assumptions; the duality theorems of linear 

programming then turn out to be special cases of these theorems (3,   4 and 5). 

Henceforth we assume that  A     holds and consider the sets: 

Kl = Rrn+n+1^  l(x, Y,\)(3   seS,  teT,  x e R1^  y e R'J     and 
- 

x  >   t - Ay,   y   <   s  -  xA,   \   <   <t>(x)  -     tf/(y)   V 

K^  = Rn+1n | (y,X)|3  seS,  xeR^1,    and   y <   s - xA,  \ <   <t>(x)"l 

Rm+^ hx,X)l3   teT.  y eR^.    and   x >  t - Ay.   \ >  0(y)j     . 

Z 

K 

-6- 



The sets   K,,   K?)   and K-   are readily seen to be convex (because   ip  and    - «t1 

are convex);   furthermore,   if $  and  0  are linear   then   K.,   K,   and   K,   are 

also closed sets.    Of course any (or all) of  K,,   K-,   K,   may be closed with- 

out either  «^   or   ^ being linear.    Thus it is important to know the following: 

Theorem 3. 

If  K.   is closed and X, Y  are both non-^mpty,  then (2) holds. 

Theorem 4. 

If  K,   is closed and max   $(-x.)   exists,   then (2) holds. 
xeX 

Theorem 5. 

If  K?   is closed and min     0(y)   exists,   then (2) holds. 
yeY 

Proof of Theorem 3:      If the point  (x, y,X) =0  is in  K,   then (2) obviously 

holds,   suppose  0   i  K, .    Since  K,   is convex and closed, there exist (see [3]) 

x-e R    ,  y0eR  ,   X.0eRs    aeR,   suchthat: 

0 <   a   <  x^x - y„y - XfA, all    (x, y>\)eK1 

Since   S   and   T   are non-empty (see Lemma  1),  and since   (x, y, X. ) eK,    when- 

ever there exist   (x, y.MeK,    such that   x >  x,   y <  y   and   X.   < X,   it follows 

that   xn >  0,   yA  >   0,     and   X.n   >   0.    Also, 

0 <  a  < x0 (t - Ay) - (s - xA)y0 -X^ [<j)(x)  -   ^(y)]   , 

.   all   (s,t, x,y)eS x T  x Rm x R" 
+ + 

From the homogeneity of <j)   and xjj   and Lemma i it then follows that: 

0   <   a    <    <t){x0)  - ^(y0) 

n x0Ay      <    X0 «^(y) all    y e R" 

r0       >    X0 xAyn       >    Xn4>(x) all    x e R3^1 
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Thus, ^o0(yo)> x0Ay0 > X0 <t>(x:0) > VQ a + \o0(yo) , and >.0=0. But then 

x0A < 0 and Ay0 > 0. Now X, Y we assumed non-empty, let xeX yeY. 

For any   X e R     we then have: 

G 

<j>(x) + X.<|>(x0)    <    «t>(x + \x0) <   (x + Xx0)Ay < 

<  (x + X.x0)A(y + \y0) <    xA(y + Xy0) 

1 My + Xy0) <   0(y) + X^(y0)  . 

Thus,   ^/(y) -<t){x)   > X.[4)(x0) - ^(y0)] >   X a     for all    XeR     which contradicts 

a > 0.    Thus   0 e K,    and (2) holds. q.e.d. 
* 

Proof of Theorems 4 and 5:     We prove Theorem 4,   the proof of Theorem 5 is 

analogous.    By hypothesis X is non-empty and <f> is bounded above on X,   let: 

M   =   sup     tt>(x) 
xeX 

If   (x, X)=(0,M)   is in   K3   then,   trivially,  (2) holds.    We show that the 

contrary assumption leads to a contradiction.    If   (0, M) £   K, then,   as in the 

proof of Theorem 4,   it follows from the various properties of   K^   that there 

exist   xn e R    ,   X.eR     and    a e R   such that: 

n 
X0M  <  a  <  x0(t-Ay) + X^y),        all (t, y)   T  x R+ 

Hence,   as before, 

x0Ay < X0^(y), all    y e R^ 

and     <j)(x0)  > X0M . 

,n 

-8- 



If   X...    is positive then   x = X."  xneX   and <j)(x)  >  M ,  contradicting the definition 

of M.    Thus   \Q = 0,   and   x-A < 0,   <j>(x0)  > 0;   the last contradicts the fact 

that   X   is non-empty and that <|>  is bounded above on X. q.e.d. 

As a final result we demonstrate that if   «t1   and   0  are both linear (homo- 

geneous) then K,   is closed.    That K,  and K,  are closed, under the same 

linearity hypothesis,  follows in a similar manner. 

Suppose   <t)(x) = bx,     0(y) = ay     (b e R    ,   aeR  ) ,    first note that in this 

case: 

=    -| B \   s e R     and   s < a  I 

teRm   and   t > b 

Next,   suppose we have a sequence   (x, , y, ,\, )eK,    (k= 1,   2,   . • .) which 

converges to   (x, y,X)e Rm+n+1 .    Thus there exist   (sk'tj,.» ^ Y^) €  S xTxR^1xR^ 

such that: 

\ >  tk - Ayk > b - Ayk 

(9) yk —   Sk  ~ ^Hc^ — a  " ^k^ k =  1,   2,    ... 

Xk < bxk - ayk 

and 

(10) ^k "* x'      ^k ~* ^'      ^k"*7^    " 

,m „n Now,   suppose  xeR     ,  yeR  ,    aeR     are suchthat   Ay - ob  >  0,  xA - aa <  0. 

From (9) it then follows that for each   k   we have: 

xx,   > bx - xAy    > bx -   Q-ay,   > bx -   obx,   +  QX,   > 

> bx + aX,   - x, Ay  >  bx + uX-,   + y, y - ay . 



i. e. , x{3L  -b) + y{a - y,) - a\^ >  0,       k = 1,  2,   . . .     and,   by (10), 

x(x-b) + y(a-y) -  aX.  >   0, 

In summary, then,  the system: 

x e R     ,    y e R    ,     ae R 

• Ay -  ab  >  0,     xA -   aa <  0 

x(x-b) + y(a-y) -   a\  <   0 

has no solution.    It follows then from the ordinary feasibility theorm for 

linear inequalities (see e.q.[5])   that there is an    xeR       and     y€R 

such that: • 

(x,y) A        0 

-A 

< (a -y,  x - b,   -\), 

i.e.,    xA  < a - y,   -Ay  < x-b   and   ay - bx <   -\.    But,  as noted before, 

aeS   and   beT,    thus (x,y,\)eK,    and K. is closed. 

10- 
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